Omega 3 Polyunsaturated Fatty Acids Improve Endothelial Dysfunction in Chronic Renal Failure: Role of eNOS Activation and of Oxidative Stress

نویسندگان

  • Michela Zanetti
  • Gianluca Gortan Cappellari
  • Davide Barbetta
  • Annamaria Semolic
  • Rocco Barazzoni
چکیده

BACKGROUND Endothelial dysfunction is a key vascular alteration in chronic kidney disease (CKD). Omega 3 (n-3) polyunsaturated fatty acids (PUFA) reduce vascular oxidative stress and inflammation. We investigated whether n-3 PUFA could reverse endothelial dysfunction in CKD by improving endothelial nitric oxide synthase (eNOS) function and oxidative stress. METHODS 5/6 nephrectomized male Wistar rats (CKD; n = 10) and sham operated animals (SHAM; n = 10) were treated for 6 weeks with standard diet. An additional group of CKD rats were fed an n-3 PUFA enriched diet (CKD + PUFA; n = 10). We then measured endothelium-dependent (EDD) and -independent vasodilation, markers of endothelial function and of oxidative stress in thoracic aortas. RESULTS Compared to SHAM, in CKD aortas EDD and eNOS expression were reduced (p < 0.05) and 3-nitrotyrosine levels were increased, while expression of NADPH oxidase subunits NOX4 and p22phox was similar. In-vitro incubation with Tiron failed to reverse endothelial dysfunction in CKD. In CKD + PUFA, EDD improved (p < 0.05) compared with CKD rats, while blockade of eNOS by L-NAME worsened EDD. These effects were accompanied by increased (p < 0.05) eNOS and reduced (p < 0.05) expression of NOX4 and 3-nitrotyrosine levels. CONCLUSION Collectively, these findings indicate that n-3 PUFA improve endothelial dysfunction by restoring NO bioavailability in CKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...

متن کامل

Role of CYP1A1 in Modulating the Vascular and Blood Pressure Benefits of Omega-3 Polyunsaturated Fatty Acids s

The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)–dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-t...

متن کامل

Review Article: The importance of Omega-3 fatty acids in fish on human health

Heart failure (HF) incidence increases worldwide and is affected by various risk factors such as coronary artery disease, hypertension, obesity, and diabetes. Dietary recommendations for patients with HF have generally focused on sodium restriction; however, different nutritional approaches are considered in patients with a high risk of malnutrition due to the diuretic drugs they use. Omega-3 f...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017